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Scattering of Surface Waves at a Dielectric Discontinuity
on a Planar Waveguide

SAMIR F. MAHMOUD, mEMBER, 1EEE, AND JOHN C. BEAL, MEMBER, IBEE

Abstract—A theoretical treatment is presented of the scattering
of a surface-wave mode on a planar surface waveguide at an abrupt
axial transition. The latter is due to a dielectric obstacle that covers
the line completely up to a given height. The analysis involves the
matching of the tangential fields, expressed in terms of complete
sets of eigenmodes, on the transition plane. The problem arises in
certain obstacle detection schemes currently being proposed for
guided transportation, which use the principle of guided radar.

L. INTRODUCTION

SE of surface-wave lines has been suggested in the
literature as a means of providing continuous-access
communieation for guided ground transportation [17, [2].
Obstacle detection schemes, sometimes referred to as
‘guided radar,” have also been discussed (e.g., [2]-[5]).

In a guided radar scheme it is possible for an obstacle
1o be detected in one of two main ways: by the surface-
wave reflections produced directly by the obstacle on the
installed surface-wave line; or by the transmission loss of
surface-wave signals sent back by transponders on the
line at the far end of the guide-way. These types of opera-
tion are discussed in detail elsewhere [37-[5].

In this paper we introduce a theoretical treatment of
the scattering problem associated with obstacles that can
be characterized as dielectrics, such as rockfalls, landslides,
and snow. Typically, these obstacles cover a certain length
of the transmission line and hence the incident wave will
suffer both reflection loss at the front of the obstacle and
transmission loss through the obstacle. Part of the incident
power will be radiated in the forward and backward di-
rections. All the scattering parameters at the obstacle are
obviously functions of the relative permittivity e;, the
loss tangent tan § of the obstacle, as well as the general
shape of the obstacle and the region of transition to it.
As discussed in [4], [5], the transmission type of guided
radar is probably more suitable for detecting thesc ob-
stacles than the reflection type and hence the transmission
loss in this case is of primary importance.

There are two extreme cases for the transition region.
The first is an abrupt transition for which the reflection
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is a maximum. The second is a gradual transition which
may be approximated by a matched load. The first case
is obviously more favorable to the reflection type of opera-

tion.of guided radar. As to the transmission type of opera-

tion, the transmission loss does not greatly change from
one case to the other, as the loss through the obstacle is
usually high. For this reason, we shall consider only the
abrupt transition {from guide @ to guide b iv Fig. 1, in
which the problem has also been simplified to one in which
the obstacle is represented as a uniform layer of diclectric
on an infinite planar guide. This reduces it to a two-dimen-
sional problem in order, at this stage, to emphasize the
more fundamental aspeets of guided radar. Guide b in the
figure is thus a composite one that consists of the basic
planar waveguide covered by the dielectric obstacle. It is
assumed that guide e has only one propagating surface-
wave mode incident on the transition. The method of solu-
tion of the scattering problem contains the following steps.

1) A complete set of eigemodes, including both the
discrete and continuous spectra, is derived in Section 1I
for guides @ and b in Fig. 1.

2) The total tangential ficlds on both sides of the plane
2z = 0 are expressed in terms of their respective sets of
eigenmodes and the uvknown scattering parameters.
These fields are then equated on the whole plane 2z = @
and the resulting equations are manipulated to derive the
scattering parameters (Section IIT).

The method outlined is obviously applicable to a large
class of problems that involve abrupt transitions from
one waveguiding structure to another. It is worth men-
tioning that the present technique is, in essence, similar
to that used by Clarricoats and Slinn [67] for iransitious
in closed waveguides, but is here adapted to cover open
waveguides as well, where open waveguides are defined
here as those for which the guided fields extend over an
infinite cross section.
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II. EIGENMODES

In this section we shall derive both the discrete and
continuous spectra of eigenmodes for guide b (Fig. 1),
where only TM modes will be considered. The correspond-
ing spectra for guide @ can then be obtained from the pre-
ceding as a special case in which the dielectric constant
e is replaced by that of the free space. This derivation
follows closely the general outlines given by Shevchenko
in his monograph [77], where the usual radiation condi-
tion is relaxed into a less stringent one in order to be able
to define ‘pseudomodes,” which constitute the continuous
spectrum. In the following, all lengths will be normalized
with respect to N\o/2r defined as unity and impedances
normalized with respect to 120x. (Hence wes and wuo will
be replaced by unity, where Ae,e0,10 are the usual free-space
values.) S :

For TM modes on guide b, the only nonvanishing fields
are h,, e, and e,. We seek a solution characterized by a
transverse wavenumber « in the air region. The magnetic
field component h.(4 ¢) satisfies the appropriate wave
equations in the following three regions. 1) —t <y < 0.
2) 0 <y < h.3) y = h. The solutions for ¥, with the factor
et=82) yunderstood, are easily obtained as

¥ =-cosS (y+1), —t<y <0 (la)
=aposry+bsin1"y, 0<y<h (1b)
= Vexp (—jr(y — h)) + Wexp (j(y — k),
y=h (1c)
where

S = (e — )Y,

r= (o= B

and ¢ can represent either a discrete mode or a pseudo-
mode, as will be defined later.

From Maxwell’s equations, the electric field components
e, and ¢, are given by

and g = (1 — &)1

e = BY/e

and
e = jP' /e (2)

where the prime indicates a differentiation with respeet
to y, e is the relative dielectric constant of the region of
interest, and @ is the longitudinal wavenumber.

The continuity of h. and e, at the interfaces y = 0 and
y = h provides four equations whose solution results in
the coefficients a, b, V', and W as follows.

a = cos St (3a)
b = — e sin St/ (er) (3b)
and
v
= $a(cos rh F jr sin rh/esx)
W .
+ 3b(sin 7k = jr cos rh/eax). (3c)
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To complete the derivation of the modal spectra, we
have to specify the condition that the fields should satisfy
as y — «. The radiation condition [8] could be imposed
but it would result in only the discrete spectrum of modes,
which is not a complete set. Instead, following Shevehenko
['77], we relax the radiation condition into another that re-
quires only the finiteness of the fields as y — «, i.e.,

lim ¢ = finite quantity.

y>0

(4)

The discrete modes have fields that decay in the air region
away from the structure and hence they are given by [see

(1c)]
W(x) = 0 with Im (¥) < 0. (5)

Kquation (5) along with (3¢) defines a discrete and finite
set of modes which are referred to as surface-wave modes.

The continuous set of modes, which may be called
‘pseudomodes’ [7] corresponds to all purely real values
of k. Such modes each satisfy all boundary conditions,
including condition (4) as y — . Although a pseudo-
mode carries an infinite amount of power, a combination
of such modes can represent a physical radiation field
which indeed satisfies the usual radiation condition, as
discussed by Shevchenko [77].

The complete set of eigenmodes satisfies the mutual
orthogonality relationships. In particular, for two pseudo-
modes characterized by « and «’, the following orthog-
onality relationship holds [5]

fw ey (Vha() dy = 20V ()W (k)5 (x — ')

—t

(6)
where §(-) is the Dirac s-function.

III. THE TRANSITION REGION

A. Basic Equations

The modal spectrum of guide a includes a single surface-
wave mode, the incident mode, plus a continuous spectrum
of modes. Guide b has a finite number of surface-wave
modes, the number being dependent on the obstacle height
and the dielectric constant, as well as a continuous spec-
trum of modes. We assume that the surface-wave mode is
incident alone from side a. As a result of scattering at the
interface, there will be a reflected surface-wave mode plus
a weighted sum of reflected pseudomodes (radiation) in
guide a. Forward traveling surface-wave modes and
pseudomodes will occur in guide b.

Let the transverse fields (e, and k,) belonging to surface-
wave modes be denoted by

(a%h®) and (edhd), 1= 1,2,---

and those belonging to the pseudomodes by
(e*(k),h*(x)) (e(x),k(x)), O0<k<

where the superscripts @ and b refer to guides o and b,
respectively. Now the continuity of the tangential electric
and magnetic fields at the plane z = 0 becomes

and
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(1 + B)e + fw AT()er(x) = 3 Tied
0

t=1

+ /w dxT (k)eb (k)

0

(1 — R)he — /” T (R () = 3 Tihd

0 =1

+ [Car@re @

where R and T'; are the unknown surface-wave reflection
and transmission coefficients, and I'(x) and T'(x) are the
unknown reflection and transmission coefficients for the
pseudomodes. M, is the number of surface-wave modes in
guide b. We notice that all the fields are functions of the
transverse dimension, y (over the interval —t < y < «),
which is dropped here for convenience.

The first step to simplify (7) is to change the continuous
summations into discrete ones. This is done by writing
the functions T'(x) and T (k) in terms of a known set of
functions fi(«), e.g., normalized Laguerre polynomials,
which is complete over the interval (0, ). Thus

T = 5 v 6(0)
and

T(x) = 3 455(x).

=0

Upon substitution back in (7), these take the form

(8)

%0 M, ©
1+ R)e® + X ville = 3 Ted + X 4LEP

7=0 i=1 §=0

© M, ©
(1= R — 2yl = 22 T + X GHP (9)

7=0 =1 =0

where the fields {E;2,H;**} are defined as

(B} & [ dgie) e () 0 ()}

J=1012---. (10)

Since the functions f;(«) are known and the basic pseudo-
mode functions are also known for a given structure, the
preceding set of fields is then completely defined. The
field E,2?(«x) and H;*?(«x) can be considered basic eigen-
funetions that represent the continuous spectra of the
guides a and b, respectively. Notice, however, that these
eigenfunctions are not necessarily orthogonal. Neverthe-
less, this should not limit their role as a set of basic eigen-
functions. -

One attractive feature of the form of (9) is that they
resemble the corresponding equations that would have
arisen if our guiding structure were a closed instead of an
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open waveguide. In the closed waveguide case, the spec-
trum of modes is entirely discrete and so is the case in (9).
This, then, suggests that the procedure of solution used
by Clarricoats and Slinn [6] for a closed waveguide can
as well be used in the present problem.

To eliminate the dependence on the transverse dimen-
sion y in (9) (which is not explicitly displayed) we mul-
tiply the first equation by Al = 1,---, M, and H,?,
m = 0,1,+++, successively, and then integrate over the
range of y(—¢— »). We do the same with the second
equation except that we multiply by e?4 = 1,..., M, and
Em = 0,1,---, instead. Before writing the resulting
equations, let us define the following inner product

(i,02) = / vyvs dy
—t
where v; and v, are functions of y, defined over the interval
of integration. We then have the following infinite set of
equations

(14 R)(er%hd) + 3 vi{E%hd) = T

7=0

1=12,--+M,
(1 + R) (e, Ha®) + 2 vi(EsHu?) = X 1B Hab)

=0 =0

m = 0)1)--.)@

(1 — R){edm) — X viledHe) = Ts

=0

P=1,2++,M,
(1 — R) (Enb ) — 2 vilBn Hj*) = 30 (B0 HP)
=0

=0
m = 0,1,. ooy 00
(11)

where we have used the fact that the modes (e.b,h?) are
orthogonal to each other and to the modes (£ H}). The
inner product {e?h?) is assumed to be normalized to
unity.

An alternative derivation of (11) which may give more
insight into these equations can be obtained as follows.
The total tangential fields at z = 0 on the side of guide a
may be expressed in terms of forward and backward
traveling modes which belong to guide b. The forward
traveling modes are then equated to those on the b side
of the boundary while the backward traveling modes are
equated to zero. This approach is worked out in detail
elsewhere [5] and is shown to result in the same set of
equations as (11).

To solve the preceding equations, it is necessary to
truncate them. Therefore we limit the number of modes
belonging to the continuous spectrum to N in guide a and
M in guide b where N and M are finite integers. It will be
seen later that only a small number of these modes, about
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two or three, need to be considered. The functions fi(«)
have here been chosen to be the normalized Laguerre
polynomials (e.g., [8]). The first few members of these
functions are as follows.

fo(x) = exp (—«/2)
fi (k) = (1 — &) exp (—«/2)
folk) = (1 — 2k + x2/2) exp (—«/2), (12)

which show that as the order of the function increases,
its decay with « becomes slower. Hence the part of the
continuous spectrum corresponding to high values of «,
i.e., the evanescent modes with 8 imaginary, will be effec-
tively represented by the higher order Laguerre functions.
Tt also follows that the truncation of this set of functions
amounts to the neglect of the contribution of the higher
evanescent modes, an approximation which is common
practice in dealing with closed as well as open waveguides.

After the truncation, the number of unknowns in (11)
becomes 1 + N + M, + M, while the number of equa-
tions are 2(M,; + M). We can always adjust N and M
such that the number of equations is equal to or greater
than the number of unknowns. In the latter case, a pseudo-
inverse of the matrix of coefficients is performed.

A comment on the power balance is now in order. A unit
power incident from guide @ should be accounted for by
the scattered power in guides ¢ and b. We notice that (11},
in their truncated form, do not automatically guarantee
the satisfaction of the power balance condition. This con-
dition then serves as a good check on the obtained solu-
tion. Thus we change N and M within certain limits and
we choose that solution which best satisfies the power
balance, which helps to reject possible unphysical solu-
tions. This completes the basic formulation of the problem.

etc.,---

B. Derivation of the Inner Products in (11)

The inner products in (11) involve the following basic
expressions.

L)

/we“(xa)h"(x”)dy and j () he(x2) dy

— -
where «® and « are the transverse wavenumbers in the air
region. «* and «* can each be either purely real or purely
imaginary, depending on whether the mode considered is
a pseudomode or a surface-wave mode. In the following
we shall derive the first integral in the preceding in terms
of the basic scalar fields ¥*(x%) and ¢*(«*). The second
integral can be obtained by a mere exchange of the super-
scripts @ and b.
Using (1) and (2) we have

o

[ ety =p [ weroway  a3)

—t -
where, for convenience, the arguments «® and « are omitted
on the right-hand side (RHS). e and ¢ are the relative
permittivities in guides a and b, respectively, and are
given by
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€ = &, —t<y<0
=1, y >0 (14a)
and
¢ = e, —t<y<0
=& 0<y<h
=1, y = h. (14b)

The following basic differential equations apply for
¥* and 2.

(d2/dy2)y = — S, region 1 (15a)
= —r¥%), region 2 (15b)
= — &, region 3 (15¢)

where S, r, and « are transverse wavenumbers in the re-
spective regions. We notice that r is different in the two
guides, being (e — $2)12 in guide b and & in guide a. On
writing (15a) for both ¢ and ¢*, multiplying the resulting
two equations by y* and y¢, respectively, and then sub-
tracting the second from the first, we obtain the following.

0 1
[ vway = grmgalvv — e ()

and similar expressions hold for integrations over regions 2
and 3. The prime over ¢ refers to a differentiation with

respect to y. The boundary conditions at y = —4, 0, and
h are
Y(=1) =0
¥(07) = ¢(0)
Y'/ele =¥ /elit
Y(h™) = Y(ht)
and

Vel = ¢'/eln

which apply to both ¥2 and 2.
Now using (16) and similar expressions for regions 2
and 3 along with the boundary eonditions (17), we finally

arrive, after some manipulations, at an expression for
(13) as

(17)

/w e (k) («) dy = 2x8° Re (VeW?)5(x* — &)

—t

n Be(ea — 1) [Xl —

2 2 2
Tb""Ta Kb_

X
x“; + Xs/éd:I (18)
where X1, X, and X; are given by
Xy = (V/e) Yoy — 4o Jyeo™
Xo = [¥Y — o Jun? ‘
and

Xa = [y Jpmit — [P Jmr™ (19)
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The inner product with @ and b exchanged is also given
by (18) if we interchange the superscripts @ and b and
change X3/¢; to X; and the term (e — 1) into (1 — ).

IV. NUMERICAL RESULTS AND COMMENTS

The truncated set of (11) was solved numerically for
the complex scattering parameters R,T;7 = 1,2,+++,M,,
yit = 1,2,+++,N, and ;¢ = 1,2,---,M. Some of the inner
products in these equations were computed by use of a
Laguerre—Gaussian integration subroutine. The integers
N and M were increased until the variations in the scatter-
ing coefficients became sufficiently small. Values of N and
M up to 3 were found adequate for good convergence and
in all cases we used N = 1 or 2 and M = 3. The power
balance equation was checked at every choice of N and M
and if this was in error by more than 3 percent, that solu-
tion was completely rejected.

Fig. 2 shows results for the magnitude of the surface-
wave reflection coefficient. Three cases corresponding to
different line parameters were treated as follows.

Case 1: t/N = 0.06, ¢, = 2.56,v,/C = 0.972, P,/Py =
0.925.

Case 2: t/h = 0.06, & = 9.00, v,/C = 0.882, Po/Pr —
0.888.

Case 3: t/N = 0.147, ¢, = 2.56,0,/C = 0.837, P,/Pr =
0.473.

In the preceding, v,/C is the ratio of the phase velocity
of the incident surface-wave mode to that of a plane wave
in free space, and P,/Pr is the proportion of the total in-
cident power in the air region of guide a. The dielectric
constant ¢; of the obstacle was taken equal to 10 in all
cases; a figure that is typical for rocks.

The magnitude of the reflection coefficient | B | tends
to increase with the height 4 of the transition in an oscilla-
tory manner (Fig. 2). These oscillations may be attributed
to the fact that the phase velocities of the surface-wave
modes in guide b, as well ag the number of modes, are con-
tinuously varying with the height of the transition. When-
ever these modes can make a good match to the incident
surface-wave mode from a, the reflection coefficient shows
a minimum. Another observation on Fig. 2 is that at
sufficiently high &, the reflection coeflicient is greater for
a greater ratio P,/Pr, the latter being greatest for Case 1
and lowest for Case 3. Finally, we observe that the first
peak of | R | oceurs at a lower height 4 in Case 2 compared
with case 1). This may be explained by the fact that the
evanescent decay of the incident surface-wave fields in the
air is greater in Case 2. It is worth mentioning that the
phase of B (relative to that of the incident mode at z = 0)
was hardly different from 180° in all cases except at very
low height (as low as 0.03\,) where it deviated by only
a few degrees. It may then be suggested that this can
always be taken as 180° for the particular parameters of
the line and obstacle treated here.

Fig. 3 gives the percentages of the transmitted power
in guide b, both in the form of surface waves and radiation.
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Fig. 2. Reflection coefficient. Case 1: ¢ = 2.56, t/A, = 0.06.
Case 2: e = 9.00, #/Xo = 0.06. Case 3: e = 2.56, t/Ay = 0.147.
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Fig. 3. Transmitted surface-wave and radiated powers. Case 1:
& = 2.96, t/x = 0.06. Casé 2: & = 9.00, {/A, = 0.06. Case 3:
& = 2.56, t/x, = 0.147.

As the transition height h — 0, it is clear that the transi-
tion surface-wave power approaches 100 percent of that
of the incident wave, with the radiation being zero. On
the other hand, for a very high obstacle, the transmitted
power is less than 100 percent but it is mostly trapped as
surface-wave modes in guide b, with the radiation ap-
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Fig. 4. Transmission loss versus obstacle height. Case 1.——
t/n = 0.06, & = 2.56, v,/c = 0.972. Case 2: —-—, t/Ay = 0.06,
& = 9.00, v,/c = 0.882. Case 3: — — —, i/ = 0.147, ¢, = 2.56,
v,/c = 0.837.

proaching zero again. Thus there is some height # at which
the radiation component of power is a maximum and, cor-
respondingly, the surface-wave part is a minimum. In all
the three cases shown in Fig. 3 this height corresponds to
only one surface-wave mode propagating in guide b. We
further observe that the peak of the radiated power is less
for a slower incident mode and hence it is least for Case 3.
For all the cases considered here, we have found that the
reflected radiation power in guide a was negligibly small.
However, no general conclusions regarding this point will
be made since this may be due to the particular parameters
chosen for the present problem.

In Fig. 4 we show the power transmission loss as a fune-
tion of h at various z = [ planes in guide b. The attenua-
tion factors for the modes were computed by simple per-
turbation. Such computation can produce meaningful
results only if the loss tangent (tan 6) of the obstacle ma-
terial is taken to be very small. We have thus fixed tan §
at 0.01, which still lies within the range of the loss tan-
gents of typical rocks and snow at frequencies in the UHF
range. An important consequence of Fig. 4 is that a sig-
nificant discrimination can be observed between a dan-
gerously high obstacle and an insignificantly low one,
as there exists a large difference in their transmission
losses over a distance of, say, 30 free-space wavelengths.
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This is an important consideration for the transmission
type of guided radar [47] where, for example, a high pile
of rocks would have to be distinguished from a small layer
of dirt on the line.

V. CONCLUSIONS

The problem treated here belongs to the general class
of problems dealing with abrupt axial discontinuities in
open, or surface waveguides. The total fields on both
sides of the discontinuity are expressed in terms of appro-
priate complete sets of eigenmodes, that include both the
diserete and the continuous spectra, and the boundary
conditions at the discontinuity plane are enforced. The
continuous summation over pseudomodes is simplified by
expanding it as a discrete sum that involves the use of
normalized Laguerre polynomials.

The surface-waveguiding structure considered is that
of a simple plane dielectric layer on a metallic ground sheet
and the discontinuity is due to a finite height of a di-
electric material that completely covers the guide. The
surface-wave reflection and transmission coefficients, as
well as the radiated power, are obtained for a variety of
line parameters and heights of the obstacle.

This problem was motivated by the development of ob-
stacle detection schemes, using guided radar to detect
landslides, rocks, or snow on the tracks of guided trans-
portation systems.
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