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Discontinuity

SANHR F. MA HNKXJD, MEMBER, IEEE, AND JOHN C. REAL, MEMBER, I13EE

Absfracf—A theoretical treatment is presented of the scattering
of a surface-wave mode on a planar surface waveguide at an abrupt
axial transition. The latter is due to a dielectric obstacle that covers

the line completely up to a given height. The analysis in~olves the

matching of the tangential fields, expressed in terms of complete
sets of eigenmodes, on the transition plane. The problem arises in
certain obstacle detection schemes currently being proposed for
g@ded transportation, which use the principle of guided radar.

I. INTRODUCTION

u
SE of surface-wave lines has been suggested in the

literature as a moans of providing continuous-access

communication for guided ground transportation ~1~, ~i].

Obstacle detection schemes, sometimes referred to as

‘guided radar,’ have also been discussed (e.g., [2]-[5]).

In a guided radar scheme it is possible for an obstacle

to be detected in one of two main ways: by the surface-

wave reflections produced directly by the obstacle on the

installed surface-wave line; or b-y the transmission loss of

surface-wave signals sent back by transponders on the

line at the far end of the guide-way. These types of opera-

tion are discussed in detail elsewhere [3]-[5].

In this paper we introcluce a theoretical treatment of

the scattering problem associated with obstacles that can

be characterized as dielectrics, such as rockfalls, landslides,

and snow. Typically, these obstacles cover a certain length

of the transmission line and hence the incident wave will

suffer both reflection loss at the front of the obstacle and

transmission loss through the obstacle. Part of the incident

power will be radiated in the forward and backward di-

rections. All the scattering parameters at the obstacle are

obviously functions of the relative ~ermit$ivity ~d, the

loss tangent tan 8 of the obstacle, as well as the geneial

shape of the obstacle and the region of transition to it.

As discussed in, [4], [5], the transmission type of guided

radar is probably more suitable for detecting them ob-

stacles than the reflection type and henee the transmission

loss in thk case is of primary imp~utance.

There are two extreme cases for the transition region.

The first is an abrupt transition for which the reflection
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Fig. 1. T~ielectric obstacle.

is a maximum. The second k a gradual transition w bich

may be approximated by a matched load. The first case

is obviously more favorable to the reflection type of opera-

.tion,of guided radar. As to the transmission type of opera-

tion, the transmission loss does not greatly change from

one case to the other, as the loss through the obst ad e is

usllally high. For this reason, we shall consider only the

abrupt transition from guide a to guide b in Fig. 1, in

which the problem has also been simplified to one in which

the obstacle is represented as a uniform layer of dielectric

on an infinite planar guide. This reduces it to a two-dimen-

sional problem in order, at this stage, to emphasize the

more fundamental aspects of guided radar. Guide b in the

figure is thus a composite one that consists of the basic

planar waveguide covered by the dielectric obstacle. It is

assumed that guide a has only one propagating surface-

wave mode incident on the transition. The method of solu-

tion of the scattering problem contains the following steps.

1) A complete set of eigeumodes, including both the

discrete and continuous spectra, is derived in Section II

for guides a and b in Fig. 1.

2) The total tangential fields on both sides of the plane

z = O are expressed in tern-is of their respective sets of

eigenmodes and the unknown scatteri~g parameters.
These fields are then equated on the whole plane z = Q

and the result ing equations are manipulated to derive the

scatt miug parameters (S(’ction 111).

The method outlined is obviously applicable to a large

class of problems that involve abrupt transitions from

one wavegui din~ structure to another. It is worth men-

tioning that th[~ present technique is, in essence, similar
to that used by Clarri coats and Slinn [6] for transitions

in closed waveguides, but is here adapted to cover open

waveguides as well, where open wa(veguides are defined

here as those for which the guided fields extend over an

infinite cross section.
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II. EIGENMODES

In this section we shall derive both the discrete and

continuous spectra of eige~modes for guide b (Fig. 1),

where only TM modes will be considered. The correspond-

ing spectra for guide a can then I?e obtained from the pre-

ceding as a special case in which the dielectric constant

~a is replaced by that of the free space. This derivation

follows closely the general outlines given by Shevchenko

in his monograph [7], where the usual radiation condi-

tion is relaxed into a less stringent one in order to be able

to define ‘pseudomodes,’ which constitute the continuous

spectrum. In the following, all lengths will be normalized

with respect to iO/2T defined as “unity and impedances

normalized with respect to 12C)7r. (Hence coq and COKOwill

be replaced by unity, where AO,m,~Oare the usual free-space

values. ) ‘

For TM modes on guide b, the only nonv~nishing fields

are hz, e;, and e,. We seek a eolution char+cterizecj by a

transverse wavenumber K in the air region. The magnetic

field component hz ( h ~) satisfi& the appropriate wave

equations in the following three regions. 1) — t < y <0.

2) O < y < h. 3) y > h. The solutions for ~, with the factor
eic~~-~z) understood, are easily obtained as

+=coss(y+ t), –t<y~O (la)

= a cos Ty + ~ sin ryj O<y<h (lb)

= VeXP(–jK(?J -h)) +WeXP(jK(~– h)),

y>h (lC)

where

s = (% – pz)lfz, r = (Q — p2)I@, and ~ = (1 — K2)112

and $ can represent either a discrete mode or a pseudo-

code, as will’ be defined later.

From Maxwell’s equations, the electric field components

eUand e. ar,e g@en by

eU = b#/e

and

e. = j+’/e (2)

where the prime indicates a cliff erentiation with respect

to y, e is the relative dielectric constant of the region of

interest, and ~ is the longitudinal wavenumber.

The continuity of hc and e. at the interfaces y = O and

Y = h provides four equations whose solution results in
the coefficients a, b, V, and W as follows.

a = cm St (3a)

~ = – e~S sin St/ (err) (3b)

and

v

!

= @ (COS rh + jr Sin ~h/@K)

w

+ & (sin rh &jr cos rh/w), (3c)

To complete the derivation of the modal spectra, we

have to specify the con@ition that the fields should satisfy

as~~w. The radiation condition [8] could be imposed

but it would result in only the discrete spectrum of modes,

which is not a complete set. Instead, following Shevchenko

[7], we relax the radiation condition into another that re-

quires only the finiteness of the fields as y ~ ~, i.e.,

lim + = finite quantity. (4)
u+-

The discrete modes have fields that decay in the air region

away from the structure and hence they are given by [see

(lC) ]

W(K) = O with Im (K) <0. (5)

Equation (5) along with (3c) defines a discrete and finite

set of modes which are referred to as surface-wave modes.

The continuous set of modes, which may be called

‘pseudomodes’ [7] corresponds to all purely real values

of K. Such modes each satisfy all boundary conditions,

including condition (4) as y -+ CQ. Although a pseudo-

code carries an infinite amount of power, a combination

of such modes can represent a physical radiation field

which indeed satisfies the usual radiation condition, as

discussed by Shevchenko [7].

The complete set of eigenmodes satisfies the mutual

orthogonalit y relationships. In particular, for two pseudo-

modes characterized by K and K’, the following orthog-

onality relationship holds [5]

[rneu(K)h~(K’) dy = 2rV(K)W(K)*(K - K’) (6)
J—t

where 8( o) & the Dirac ~-function.

III. THE TRANSITION

A. Basic Equations

REGION

The modal spectrum of guide a includes a single surface-

wave mode, the incident mode, plus a continuous spectrum

of modes. Guide b has a finite number of surface-wave

modes, the number being dependent on the obstacle height

and the dielectric constant, as well as a continuous spec-

trum of modes. We assume that the surface-wave mode is

incident alone from side a. As a result of scattering at the

interface, there will be a reflected surface-wave mode plus

a weighted sum of reflected pseudomodes (radiation) in

guide a. Forward traveling surface-wave modes and

pseudomodes will occur in guide b.

Let the transverse fields (e. and kx) belonging to surface-

wave modes be denoted by

(e,a,h,~) and (ei’,h?), ~= 1,2,. . .

and those belonging to the pseudomodes by

(e~(K),ha(K)) and (e’(K), hO(K)), ()<K<~

where the superscripts a and b refer to guides a and b,

respectively. Now the continuity of the tangential electric

and magnetic fields at the plane z = O becomes
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+ f dd’(K)eb(fo
o

J
.

(1 – R)hl” – mehd’ (K)ha(K) = S Tilt}
o i=l

+ ~m G?KT(K)hb(K) (7)
o

where R and Ti are the unknown surface-wave reflection

and transmission coefficients, and r(K) and T(K) are the

unknown reflection and transmission coefficients for the

pseudomodes. M, is the number of surface-wave modes in

guide b. We notice that all the fields are functions of the

transverse dimension, y (over the interval – t< y < co),

which is dropped here for convenience.

The first step to simplif y (7) is to change the continuous

summations into discrete ones. This is done by writing

the functions r(K) and T(K) in terms of a known set of

functions ~i ( K), e.g., normalized Laguerre polynomials,

which is complete over the interval (O, m ). Thus

r(K) = ~ ~jfj(K)

+0

and

T(K) = ~ tjfi(K). (8)
j=fl

Upon substitution back in (7), these take the form

(1 + R) e,” + ~ ViEja = “~ Tieib + ~ tjEjb
+0 i= 1 f=o

M,

(1 – R)hl” – ~ ~jHja = ~ Tihib + ~ tiH~ (9)
~=o i-l +0

where the fields {EiaSb,Hi”’b } are defined as

/
{Ei~,~,Hj~,b} ~ @dKfj(K) {ea’b(K),ha’b(K) ]

o

j = 0,1,2, . . . . (lo)

Since the functions fi( K) are known and the basic pseudo-

code functions are also known for a given structure, the

preceding set of fields is then completely defined. The

field E,a,b ( K) and Hia,b ( K) can be considered basic eigen-

functions that represent the continuous spectra of the

guides a and b, respectively. Notice, however, that these

eigenfunctions are not necessarily orthogonal. Neverthe-

less, this should not limit their role as a set of basic eigen-

functions.

One attractive feature of the form of (9) is that they

resemble the corresponding equations that would have

arisen if our guiding structure were a closed instead of an

open waveguide. In the closed waveguide case, the spec-

trum of modes is entirely dkcrete and so is the case in (9).

Thk, then, suggests that the procedure of solution used

by Clarricoats and Slinn [6] for a closed waveguide can

as well be used in the present problem.

To eliminate the dependence on the transverse dimen-

sion y in (9) (which is not explicitly displayed) we mul-

tiply the first equation by hib,i = 1,. . . ,M~ and H~b,

Wz=o,l,. ... successively, and then integrate over the

range of Y ( —t ~ co). We do the same with the second

equation except that we multiply by e?,i = 1,. . . ,M, and

E~b,m = 0,1, 0. c, instead. Before writing the resulting

equations, let us define the following inner product

/
(V,,V,) = mVIII, dy

—t

where VI and V2are functions of y, defined over the interval

of integration. We then have the following infinite set of

equations

(1 + R) (el”,~ib) + j ~j(Eja,hib) = l’i

j-o

~ = 1,~,. . .,M,

(1 + R) (e,O,H~b) + ~ Yj(Ei”,H~b) = S t~(E~b,H*b)
&o j=o

m = (),1,. ... co

(1 – R) (eib,hl”) – ~ ~j(eib,Hja) = T,
~=o

i = 1,2,. ..,M,

(1 – R) (E~b,h,”) – ~ ~~(Ewb,Hi@) = ~ ti@~b,Hjb)
j=o +0

m=(),l,. ... cc

(11)

where we have used the fact that the modes (e,b,hib) are

orthogonal to each other and to the modes (E~b,H1b). The

inner product (eib,hib ) is assumed to be normalized to

unit y.

An alternative derivation of (11) which may give more

insight into these equations can be obtained as follows.

The total tangential fields at z = O on the side of guide a

may be expressed in terms of forward and backward

traveling modes which belong to guide b. The forward

traveling modes are then equated to those on the 6 side

of the boundary while the backward traveling modes are

equated to zero. This approach is worked out in detail

elsewhere [5] and is shown to result in the same set of

equations as (11).
To solve the preceding equations, it is necessary to

truncate them. Therefore we limit the number of modes

belonging to the continuous spectrum to N in guide a and

M in guide b where N and M are finite integers. It will be

seen later that only a small number of these modes, about
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two or three, need to be considered. The functions ji(K)

have here been chosen to be the normalized Laguerre

polynomials (e.g., [8]). The first few members of these

functions are as follows.

j,(K) ‘eXP(–K/2)

fI (K) = (l– K)exP(– K/2)

$,(K) = (1–2K+K2/2) exP(– K/2), etc.) ”.” (12)

which show that as the order of the function increases,

its decay with K becomes slower. Hence the part of the

continuous spectrum corresponding to high values of K,

i.e., the evanescent modes with o imaginary, will be effec-

tively represented by the higher order Laguerre functions.

It also follows that the truncation of this set of functions

amounts to the neglect of the contribution of the higher

evanescent modes, an approximation which is common

practice in dealing with closed as well as open waveguides.
After the truncation, the number of unknowns in (11)

becomes 1 + N + M. + M, while the number of equa-

tions are 2 (M. + M). We can always adjust N and M

such that the number of equations is equal to or greater

than the number of unknowns. In the latter case, a pseudo-

in-verse of the matrix of coeilicients is performed.

A comment on the power balance is now in order. A unit

power incident from guide a should be accounted for by

the scattered power in guides a and b. We notice that (11),

in their truncated form, do not automatically guarantee

the satisfaction of the power balance condition. This con-

dition then serves as a good check on the obtained solu-

tion. Thus we change N and M within certain limits and

we choose that solution which best satisfies the power

balance, which helps to reject possible unphysical solu-

tions. This completes the basic formulation of the problem.

B. Derivation oj the Inner Products in (11 )

The inner products in (11) involve the following basic

expressions.

/

m

!

.
e“ (Ka) ld (Kb) dy and f#(f&’)~a(Ka) dy

—t -t

where K“ and Kbare the transverse wavenumbers in the air

region. Ka and Kbcan each be either purely real or purely

imaginary, depending on whether the mode considered is

a pseudocode or a surface-wave mode. In the following

we shall derive the first integral in the preceding in terms

of the basic scalar fields 4“ ( K“) and v ( Kb). The second

integral can be obtained by a mere exchange of the super-

scripts a and b.

Using (1) and (2) we have

J

m
‘“ ga(K~)~b(Kb) dy = ~“

/
($a/~a)M du (13)

-t –t

where, for convenience, the arguments Ka and d’ are omitted

on the right-hand side (RHS ). @ and eb are the relative

permittivities in guides a and b, respectively, and are

given by

ea = er, –t<y<o

= 1, y>o

and

Eb= q, –t<y<o

= Ed, O<ysh

= 1, Y>h.

The following basic differential equations

v and ~.

(d2/dy2)t = – S24, region 1

— —r’+, region 2

— — K’+, region 3—

(14a)

(14b)

apply for

(15a)

(15b)

(15C)

where AS’,r, and K are transverse wavenumbers in the re-

spective regions. We notice that r is different in the two
guides, being (Q – ,82)112in guide b and Km in guide a. On

writing (15a) for both ~“ and ~b, multiplying the resulting

two equations by #b and ta, respectively, and then sub-

tracting the second from the first, we obtain the following.

/

o–
VP dy = 862 ~ ~~, [+”’$’ – #a+b’]_t& (16)

-t

and similar expressions hold for integrations over regions 2

and 3. The prime over V refers to a cliff erentiation with

respect to y. The boundary conditions at y = — t, O, and

h are

+’(–t) = o

+(0-) = *(O+)

+’/6 10- = lj’/e 10+

t(h-) = l(h+)

and

#/6 l.- = ~’/e Ih+ (17)

which apply to both #a and w.

Now using (16) and similar expressions for regions 2

and 3 along with the boundary conditions (17), we finally

arrive, after some manipulations, at an expression for

(13) as

J

m
ea(K”)hb(Kb) dy = 27r13aRe (V”~) 6(Ka – t?’)

—t

+P”y–l) xl–x2

“[
,# _ # ~b’ _ K.’ 1+X,/e, (18)

where XI, X2, and X2 are given by

xl = ( l/c.) [#”’@ – lq@’]Po-

X’ = ~lplp – Iplpqu=h+

and

X3 = [$a$b’].=,+ – [+~b’]~=h-. (19)
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The inner product with a and b exchanged is also given

by (18) if we interchange the superscripts a and 6 and

change Xs/e~ to X3 and the term (Q – 1) into (1 — Ed).

IV. NUMERICAL RESULTS AND COMMENTS

The truncated set of (11) was solved numerically for

the complex scattering parameters R, Ti,i = 1,2,. . . ,M,,

-Yi,i = 1,2,”” “,N, and ti,i = 1,2,. . .,Ill. Some of the inner

products in these equations were computed by use of a

LaguerreGaussian integration subroutine. The integers

N and M were increased until the variations in the scatter-

ing coefficients became sufficiently small. Values of N and

M up to 3 were found adequate for good convergence and

in all cases we used N = 1 or 2 and M = 3. The power

balance equation was checked at every choice of N and M

and if this was in error by more than 3 percent, that solu-

tion was completely rejected.

Fig. 2 shows results for the magnitude of the surface-

wave reflection coefficient. Three cases corresponding to

different line parameters were treated as follows.

Case 1: t/i. = 0.06, q = 2..56, vP/C = 0.972, P./Py =

0.925.

Case 2: t/& = 0.06, c, = 9.00, vP/C = 0.882, Pa/P~ =

0.888.

Case 3: t/hO = 0.147, e, = 2.56, VP/C = 0.837, P~/PT =

0.473.

In the preceding, vP/C is the ratio of the phase velocity

of the incident surface-wave mode to that of a plane wave

in free space, and P./PT is the proportion of the total in-

cident power in the air region of guide a. The dielectric

constant ~d of the obstacle was taken equal to 10 in all

cases; a figure that is typical for rocks.
The magnitude of the reflection coefficient I R ] tends

to increase with the height h of the transition in an oscilla-

tory manner (Fig. 2). These oscillations may be attributed

to the fact that the phase velocities of the surface-wave

modes in guide b, as well as the number of modes, are con-

tinuously varying with the height of the transition. When-

ever these modes can make a good match to the incident

surface-wave mode from a, the reflection coefficient shows

a minimum. Another observation on Fig. 2 is that at

sufficiently high h, the reflection coefficient k greater for

a greater ratio P./PT, the latter being greatest for Case 1

and lowest for Case 3. Finally, we observe that the first

peak of I R I occurs at a lower height h in Case 2 compared

with case 1). This may be explained by the fact that the

evanescent decay of the incident surface-wave fields in the

air is greater in Case 2. It is worth mentioning that the

phase of R (relative to that of the incident mode at z = O)

was hardly different from 180° in all cases except at very
low height (as low as 0.03XO) where it deviated by only

a few degrees. It may then be suggested that this can

always be taken as 180° for the particular parameters of

the line and obstacle treated here.
Fig. 3 gives the percentages of the transmitted power

in guide b, both in the form of surface waves and radiation.

—
cc—
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I
2 4 6 8 10 12 14

h/&

Fig. 2. Reflection coefficient. Case 1: ~, = 2..56, t/x. = 0.06.
Case 2: e, = 9.00, t/k,= 0.06. Case 3: c, = 2.56, t/h.= 0.147.
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I
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Fig. 3. Transmitted surface-wave aud radiated powers. Case 1:
c, = 2.56, t/Ao= 0.06. Case 2: c, = 9.00, t/AO = 0.06. Case 3:
e, = 2..56, t/h = 0.147.

As the transition height h -O, it is clear that the transi-

tion surface-wave power approaches 100 percent of that

of the incident wave, with the radiation being zero. On

the other hand, for a very high obstacle, the transmitted

power is less than 100 percent but it is mostly trapped as

surface-wave modes in guide b, with the radiation ap-
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Fig. 4. Transmission loss versus obstacle height. Case l:—
t/A= 0.06, e, = 2.56, vQ/c = 0.972. Case 2: –-–, t/A,= 0.06,
e, = 9.00, vP/c = 0.882. Case 3: –– –, t/A.= 0.147, ~. = 2.56,
UP/C = 0.837.

preaching zero again. Thus there is some height h at which

the radiation component of power is a maximum and, cor-

respondingly, the surface-wave part is a minimum. In all

the three cases shown in Fig. 3 this height corresponds to

only one surface-wave mode propagating in guide b. We

further observe that the peak of the radiated power is less

for a slower incident mode and hence it is least for Case 3.

For all the cases considered here, we have found that the

reflected radiation power in guide a was negligibly small.

However, no general conclusions regarding this point will

be made since this maybe due to the particular parameters

chosen for the present problem.

In Fig. 4 we show the power transmission loss as a func-

tion of h at various z = 1 planes in guide b. The attenua-

tion factors for the modes were computed by simple per-

turbation. Such computation can produce meaningful

results only if the loss tangent (tan 6) of the obstacle ma-

terial is taken to be very small. We have thus fixed tan 8

at 0.01, which still lies within the range of the loss tan-

gents of typical rocks and snow at frequencies in the UHF

range. An important consequence of Fig. 4 is that a sig-

nificant discrimination can be observed between a dan-

gerously Klgh obstacle and an insignificantly low one,

as there exists a large difference in their transmission

losses over a distance of, say, 30 free-space wavelengths.

This is an important consideration for the transmission

type of guided radar [4] where, for example, a high pile

of rocks would have to be distinguished from a small layer

of dirt on the line.

V. CONCLUSIONS

The problem treated here belongs to the general class

of problems dealing with abrupt axial discontinuities in

open, or surface waveguides. The total fields on both

sides of the discontinuity are expressed in terms of appro-

priate complete sets of eigenmodes, that include both the

discrete and the continuous spectra, and the boundary

conditions at the discontinuity y plane are enforced. The

continuous summation over pseudomodes is simplified by

expanding it as a discrete sum that involves the use of

normalized Laguerre polynomials.

The surface-waveguiding structure considered is that

of a simple plane dielectric layer on a metallic ground sheet

and the discontinuity is due to a finite height of a dl-

electric material that completely covers the guide. The

surface-wave reflection and transmission coefficients, as

well as the radiated power, are obtained for a variety of

liie parameters and heights of the obstacle.

This problem was motivated by the development of ob-

stacle detection schemes, using guided radar to detect

landslides, rocks, or snow on the tracks of guided trans-

portation systems.
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